skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Amthor, Jeffrey S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plants release back to the atmosphere about half of the CO 2 they capture by photosynthesis. Decreasing the rate of crop respiration could therefore potentially increase yields, store more carbon in the soil and draw down atmospheric CO 2 . However, decreasing respiration rate has had very little research effort compared to increasing photosynthesis, the historically dominant metabolic paradigm for crop improvement. Conceptual and technical advances, particularly in protein turnover and directed enzyme evolution, have now opened ways to trim the large fraction of respiration that fuels proteome maintenance by lowering the breakdown and resynthesis rates of enzymes and other proteins. In addition to being theoretically possible and practicable, exploring the reduction of respiration is prudential, given that it (i) has barely yet been tried and (ii) could help meet the challenges of sustaining crop productivity and managing atmospheric carbon. 
    more » « less